Right Heart Catheterization

Swan Ganz Catheter

- A 120-cm long, multi-lumen, balloon-tipped catheter. Usually 7.5 fr.
- Connected to a pressure transducer and temperature sensor.
- Inserted through a central venous access (R IJ, L subclavian, femoral vein).
- Waveforms rise and fall due to Δ blood volume or Δ myocardial fiber tension (ie. chamber size)
- Appropriate flushing, leveling and zeroing at Phlebostasis axis (Mid axillary line x 4th ICS)
- Help in ddx types of shock, type of pul edema, dx L \rightarrow R shunt, pul HTN, hemodynamic tailored therapy in HF.

• No benefit in RCT of ADHF (ESCAPE JAMA 2005) and should not be routinely use (Ann Int Med 1985;103:445, Am J Med 2005 118, 449)

Tips

(mm Hg)

- Time the wave with the ECG. Pressure waveforms are slightly delay after ECG.
- Use all numbers together and observe changes or trends.
- The waveform morphology is important. (Am J Med 1987.83;111).
- Know which numbers are directly measured, which numbers are from calculation!
- On round, present RA, PA, PCWP, CI, and SVR then add other paramethers (TPG, PVR) if relevant.

BA (6 mmHg)	RV (24/6 mmHg)	PΔ (24/12 mmHg)	PCWP (12 mmHg)
 Venous waveform (2 up, 2 down per cardiac cycle) A: Atrial systole Increased in RV infarct, PS, PE, Pul HTN 	Rapid upstroke followed by a rapid downstroke. Rasing during diastole	Rapid upstroke with dicrotic notch on down slope, down rending during diastole	 Venous waveform confirm by O2sat > 95% Surrogate of LV filling pressure
- Giant Cannon a waves in A-V dissociation, 3'AV block, VT X: atrial relaxation - Increase in restrictive and		Pul Hypertension: mPA > 25 mmHg	PCWP: • PCWP is assume to be equal to LA and LVEDP
constrictive disease - Decrease in severe tricuspid regurgitation	Complication Misinterpreted data: wrong data is worse than no data Insertion: complication of vasc access, arterial puncture, pneumo/hemothorax, air embolism, ventricular arrhythmias, RBBB (3' AV block in preexisting LBBB, knotting Maintenance: PA rupture, pul infarct, infection, thrombus formation.		If PCWP > PAd pressure Inaccurate measure
C: bulging of the AV valve V: filling of atrium (atrial diastole) - large C-V waves in TR			• PCWP > LVEDP in MS PV disease
Y: emptying of the RA into RV - Increase in early restrictive, severe TR - Blunted in TS, RV infarct and frank tamponade.			PCWP < LVEDP AR Diastolic dysfunction

Common pitfalls

- Failure to level
- Dampening due to air in the system
- Not measuring at end expiration (high point in spontaneous breathing. Sunrise and Valley)
- Partial wedge (in PH)
- Use computer reading number
- ? Subtract 1/2 PEEP from the values.
- 10 cm H2O = 7.35 mmHg

Flow: Cardiac output (CO, L/min) are commonly indirectly "measured" by

CO by thermodilution:	CO by Fick: "Gold standard"	
 Indicator dilution method 	Constant of mass	
 Injecting known amount and temp of fluid 	 Measure O2consumption, SaO2sat, 	
to a proximal port and measure Δ temp at	MvO2Sat, and Hb.	
distal port.		
CO = Reverse area under the curve	CO = O2 consumption / A-V O2 difference = (VO2) 10 x 1.34Hb(SaO2 – MvO2Sat)	
• Limit in TR, shunt, low CO, rhythm	• Limit in shunt, inaccurate assumption of	
disturbances, incorrect constant	VO2 (circ 2014;129:203)	
number.(Crit Care Med 1993; 21:586)		

Hemodynamics: Know the unit, understand the relations (formula)

Parameter and relations	Normal value and unit
V = I R	Δ BP = CO x SVR
СО	= 5 L/min
BSA	= 2 m2
$CI = \frac{CO}{BSA}$	= 2.5 L/min/m2
HR	= 70 bpm
SV = CO HR	= 70 ml/beat
$SVI = \frac{SV}{BSA}$	= 35 ml/beat/m2
$SVR = (MAP - CVP) \times 80$ CO	= 1300 dynes.sec/cm5
$\frac{PVR}{CO} = (\frac{mPA - PCWP}{CO})$	= 1 wood unit
TPG = mPA - PCWP	= 5 mmHg
Ao	= 120/80 mmHg
A O2sat	= 95-100 %
Mixed V O2sat	= 75 %
A – V O2 content difference	= 20 – 15 = 5 ml/dL
EF = <u>LVEDV-LVESV</u> LVEDV	
LVSWI = SVI x (MAP-PCWP) x 0.0136	= 50 – 62 g/m2/beat
RVSWI = SVI x (mPA-CVP) x 0.0136	= 5-10 g/m2/beat

Shunt Study "Sat run":

• O2 saturations were measured from multiple site of the heart.

• A step-up in O2Sat of >7% (RA level), 5% (RV or PA level) indicate left to right shunt.

```
    Inpatietn with shunt
    CO by TD is inaccurate
    CO by Fick need to use calculated
mixed venous sat
```

Shunt calc	ulation
• MvO2Sa	t = (3SVC + 1IVC)
	4
• Qs =	(O2 consumption

• Qp = (<u>O2 consumption</u>) (13.4 x Hgb x (PVO2 - PAO2Sat)

(13.4 x Hgb x (AO2 - MvO2Sat)

•Simplified Qp/Qs = <u>(AO2 – MvO2sat)</u> (PVO2 – PAO2sat)