ST-Segment Elevation on ECG

Introduction
- Normally, the ST segment is a flat, isoelectric section between the end of the QRS complex (ie. J point) to the beginning of the T wave.
- Represents the transitional time during ventricular depo to repolarization.
- Measure in relation to the end of PR segment or T-P segment.
- 50-80% of patients with STE had diagnoses other than MI.
- 5-10% of patients underwent PCI or thrombolysis did not have MI. (NEJM 2003;349:2128-35).

Mechanism Underlying ST segment elevation

A. "Injury current": The "injury zone" is in the epicardium, with a reduction in resting membrane potential, produces an injury current during resting phase → TQ depression (instead of ST-segment elevation)

B. "loss of AP dome or plateau amplitude": A difference in the AP plateau amplitude generates a transmural voltage gradient → ST-segment displacement. (True ST-segment elevation) (JACC 2003;42:401–9)

Clinical Note:
- Always start with H&P not the ECG.
- See table for common causes of STE on ECG.
- Other causes of STE may include myocarditis, post DC cardioversion (15%, last a few minutes, memory T wave?), ARVD, DCM, WPW (pseudo Q), pancreatitis, cholecystitis, external heart compression (tumor), too high chest lead, Tricyclic antidepressants or phenothiazines, scorpion bite.

Acute MI (STEMI)
- ECG diagnosis of STEMI (3rd universal definition of MI JACC 2012):
 - New ST elevation at the J point in 2 contiguous leads
 - In V2, V3 > 0.2 mV in men > 40 yo, > 0.25 mV in men <40 yo,
 > 0.15 mV in women
 - In other leads; > 0.1 mV
- Other causes of STE may meet the criterion for STEMI according to guideline, and thrombolytic or PCI may be harmful.
- Understand axis (in vertical and horizontal plane) is crucial for thinking of coronary representation on ECG.

Condition	Note	STE features	ECG Example
STEMI	• Clinical + ECG + cardiac marker	Convex STE, Q, Loss of R wave, TWI	[Image]
	• usually described as plateau, shoulder, upsloping, tombstone	Reciprocal changes	[Image]
Normal	(so-called male pattern)	• seen in healthy young men	Concave, 1-3 mm STE
	• J prev. with ↑ age: (90% in 20s, 30% in 70 yo men), The deeper the S the greater the STE	Mostly in V2	
Early	repolarization	• Normal variant?	Concave STE
	• Young black athlete male	Most in V4	
	• Early repolarize = short QT, high QRS voltage, where as it is not in AMI or pericarditis	Large not inverted T	
Acute	Pericarditis	• Sub-epicardial involvement causing STE	Diffused, concave STE, Depressed PR
	• Elevation seldom >5 mm	Reciprocal ST/PR segment in aVR	
Left ventricular	hyper trophy	• Most common cause of STE in ED patient with chest pain	Concave, V1-V3
			See LVH criteria
Left bundle	branch block	• abnormal depolarization sequence	Concave STE, V1-V3
			ST-QRS discordant (the opposite direction between ST & QRS)
Pulmonary	embolism	• RV pressure overload, dilate, and ischemia	STE in inf, ant septal 1S1Q3T3 (~20%)
			Sinus tachycardia
Takotsubo		• Transient left ventricular apical ballooning, stress induced CM	ECG indistinguishable from STEMI
			- DDx: occlusion of wrapping LAD.
Brugada	syndrome	• loss function of Na channel (SCN5A gene)	rsR’ in V1,V2
			- Loss of AP dome in the RV epicardium (Circ 1999;100:1660-1666)
			- Unmasked by class IC.
Hyperkalemia		• Tall T/ P sine wave	Down sloping STE
			- DDx with hyperacutE T in AMI
Subarachnoid	hemorrhage	• Catecholamine flooding	Deep, symmetrically TWI
			- May have the same patho with Phaeochromocytoma
			- +/- RWMA
			- Prominent J wave "slurred" downstroke QRS complex
Hypothermia		• Osborn wave	V2
			- DDx: HyperCa (short QT)
Left ventricular	aneurysm	• Same patient setting as STEMI w/o acute chest pain	Concave/convex
			- the Taller T, smaller QRS amplitude, the more like AMI than aneurysm.
			- Tw/QRS ratio > 0.36 = AMI (sens.90%)